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ABSTRACT   

 In multi-organ segmentation of abdominal CT scans, most existing fully supervised deep 

learning algorithms re-quire lots of voxel-wise annotations.. Current mainstream works to 

address semi-supervised biomedical image segmentation problem are mostly graph- 

based.  In this work, we propose Deep Multi-Planar Co- Training (DMPCT), whose 

contributions can be divided into two folds:1) The deep model is learned in a co-training 

style which can mine consensus information from multiple planes like the sagittal, 

coronal, and axial planes; 2) Multi- planar fusion is applied to generate more reliable 

pseudo- labels, which alleviates the errors occurring in the pseudo- labels and thus can 

help to train better segmentation net- works. Experiments are done on our newly 

collected large dataset with 100 unlabeled cases as well as 210 labeled cases where 16 

anatomical structures are manually anno- tated by four radiologists and confirmed by a 

senior expert. The results suggest that DMPCT significantly outperforms the fully 

supervised method by more than 4% especially when only a small set of annotations is 

uses  
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                                          INTRODUCTION  

                      MULTI ORGAN SEGMENTATION  

  

DL based multi organ segmentation tecniques represent a innovation in daily practice of 

radiation therapy .Multi-organ segmentation of radiology images is a crit- ical task which 

is essential to many clinical applications such as computer-aided diagnosis, computer-

aided surgery, and radiation therapy.CT image provide accurate anatomical information 

and electron density for treatment planning but are of soft tissue contract.Fully supervised 

approaches can usually achieve high ac- curacy with a large labeled training set which 

consists of pairs of radiology images as well as their corresponding pixelwise label maps. 

However, it is quite time-consuming and costly to obtain such a large training set 

especially in the medical imaging domain due to the following reasons:  

• precise annotations of radiology images must be hand an- notated by experienced 

radiologists and carefully checked by additional expert         

• contouring organs or tissues in 3D volumes requires tedious manual input. By 

contrast, large unannotated datasets of CT images are much easier to obtain.  

 In the biomedical imaging domain, traditional methods for semisupervised learning 

usually adopt graph based methods with a clustering assumption to segment pixels 

(voxels) into meaningful regions, e.g., superpixels. These methods were studied for tissue 

or anatomical structures segmentation in 3D brain MR images, ultrasound images, etc.  

         Thereby our study mainly focuses on multi-organ segmentation in a semi 

supervised fashion,With the recent advance of deep learning and its applications,fully 

convolutional networks (FCNs) have been successfully applied to many biomedical 

segmentation tasks such as neuronal structures segmenta- tion  single organ segmentation 

and multi-organ segmentation  in a fully super- vised manner. Their impressive 

performances have shown that we are now equipped with much more powerful 

techniques than traditional methods. The current usage of deep learning for semi-

supervised multiorgan segmentation in the biomedical imaging domain is to train an FCN 

on both labeled and unlabeled data, and alternately update automated segmentations 

(pseudo-labels) for unlabeled data and the network parameters  

.   

RESULT       

Clinical Characteristics  

Structure Sets of 120 Patients With hepatocellular carcinoma were used for 

training,validity,and testing.The median age of the patients was 59 years(range,37-83)and 

males were dominant (81.7%) (Table 1).Ninety-three patients (77.5%)  had liver 

functions of child-pugh class A and 13.35% had mild-to-moderate degree of 

ascites.Macroscopic vascular invasion was observed in 88(73.3%)patients.Eight  

(6.7%)Patients were treatment native and other patients had received various courses of 

treatment prior to radiotherapy.as a result, various changes such as iodized oils,low 

density cavity after ablative therapy and volume loss after hepatic resection existed in the 

liver of most patients.  
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TABLE 1  

 Patient Characteristics  From:  

 abdominal multi organ auto segmentation using 3D patch based deep  

convolutional neural network  

 
RFA-radio frequency ablation   

PEI-Percutaneous ethanol injection  

TACE-transarterial chemoembolization  
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 Mean and standard deviation(in paranthesis)of dice similarity coefficient and 

Hausdorff distance for the five structures From:  

Abdominal multiorgan auto segmentation using 3D patch based deep convolutional 

neural nrtwork   

 

 
(a)  dice similarity coefficient (b) Hausdorff distance  (c) mean surface distance of the 

five structures (liver,stomach,duodenum, and right /left kidney) produced by U-Net-based 

segmentation the atlas based segmentation ,relative to the previously drawn ground truth 

manual contour in 20 testing cases  
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3. Related Work  

Fully supervised multi organ segmentation early studies of abdominal organ 

segmentation focused on atlas-based methods. The frameworks are usually problematic 

because 1) they are not able to capture the large inter-subject variations of abdominal 

regions and 2) computational time is tightly dependent on the number of atlases. 

Recently, learning-based approaches with relatively large dataset have been introduced 

for multi organ segmentation. Especially, deep Convolutional Neural Networks (CNNs) 

based methods have achieved a great success in the medical image segmentation in the 

last few years. Compared with multi-atlas-based approaches, CNNs based methods are 

generally more efficient and accurate. CNNs based methods for multi-organ 

segmentation can be divided into two major categories: 3D CNNs based and 2D CNNs  

based. 3D CNNs usually adopt the sliding-window strategy to avoid the out of memory 

problem, leading to high time complexity. Compared with 3D CNNs, 2D CNNs based 

algorithms can be directly end-to-end trained using 2D deep networks, which is less time-

consuming. Semi-supervised learning. The most commonly used techniques for semi-

supervised learning include selftraining  co-training  multi-view learning and graph-based 

methods In selftraining, the classifier is iteratively re-trained using the training set 

augmented by adding the unlabeled data with their own predictions. The procedure 

repeated until some convergence criteria are satisfied. In such case, one can imagine that 

a classification mistake can reinforce itself. Self-training has achieved great performances 

in many computer vision problems  and recently has been applied to deep learning based 

semi-supervised learning in the biomedical imaging domain . Co-training assumes that 

(1) features can be split into two independent sets and (2) each sub-feature set is 

sufficient  to train a good classifier. During the learning process, each classifier is 

retrained with the additional training examples given by the other classifier. Co-training 

utilizes multiple sets of independent features which describe the same data, and therefore 

tends to yield more accurate and robust results than self-training . Multi-view learning , in 

general, defines learning paradigms that utilize the agreement among different learners. 

Co-training is one of the earliest schemes for multi-view learning.Graph-based semi-

supervised methods define a graph where the nodes are labeled and unlabeled examples 

in the dataset, and edges reflect the similarity of examples. These methods have been 

widely adopted in non-deeplearning based semi-supervised learning algorithms in the 

biomedical imaging domain . Different from other methods, our work tactfully embeds 

the multiview property of 3D medical data into the co-training framework, which is 

simple and effective.  

  

Deep Multi-Planar Co-Training  

We propose Deep Multi-Planar Co-Training (DMPCT), a semi-supervised multi-organ 

segmentation method which exploits multi-planar information to generate pseudo-labels 

for unlabeled 3D CT volumes. Assume that we are given a 3D CT volume dataset S 

containing K organs. This includes labeled volumes SL = {(Im,Ym)}lm=1 and unla-  
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Figure 1. Illustration of the Deep Multi-Planar Co-Training (DMPCT) framework. (a) We 

first train a teacher model on the labeled dataset.  

(b) The trained model is the used to assign pseudo-labels to the unlabeled data using our 

multi-planar fusion module as demonstrated in  

Figure 2. (c) Finally, we train a student model over the union of both the labeled and the 

unlabeled data. Step (b) and (c) are performed in an iterative manner. beled volumes SU 

= {Im}Mm=l+1, where Im and Ym denote a 3D input volume and its corresponding 

ground-trut and unlabeled volumes, respectively. Typically l   M. As shown in Figure 1, 

DMPCT involves the following steps:  

• Step 1: train a teacher model on the manually labeled data SL in the fully supervised 

setting   

• Step 2: the trained model is then used to assign pseudo-labels {ˆYm}Mm  

=l+1 to the unlabeled data SU by fusing the estimations from all planes  

• Step 3: train a student model on the union of the manually labeled data and automatically 

labeled data SL  {(Im, ˆYm)}Mm=l+1   

• Step 4: perform step 2 & 3 in an iterative manner.  

  

Teacher Model  

We train the teacher model on the labeled dataset SL. By splitting each volume and its 

corresponding label mask from the sagittal (S), coronal (C), and axial (A) planes, we can 

get three sets of 2D slices, i.e., SV L = {(IVn ,YV n )}NV n=1,V  {S, C,A},  where NV is 

the number of 2D slices obtained  from plane V . We train a 2DFCN model (we use as 

our reference CNN model throughout this paper) to perform segmentation from each 

plane individually. Without loss of generality, let IV  RW×H and YV ={yVi}W×H i=1 

denote a 2D slice and its corresponding label mask in SVL , where yV i  {0, 1, . . . , K} is 

the organ label (0 means background) of the i-th pixel in IV . Consider a segmentation 

model MV : ˆY= fIV ; θ, where θ denotes the model parameters and ˆY denotes the 

prediction for IV .  

Our objective function is L(IV ,YV ; θ) =  1 W × H i=1k=01(yVi = k) log pVi,k where 

pVi,k denotes the probability of the i-th pixel been classified as label k on 2D slice IV and 
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1(·) is the indicator function. We train the teacher model by optimizing L w.r.t. θ by 

stochastic gradient descent.  

  

Multi-Planar Fusion Module  

  

Given a well-trained teacher model {MV |V  {S, C,A}}, our goal of the multiplanar 

fusion module is to generate the pseudo-labels {ˆYm}Mm=l+1 for the unlabeled data 

SU.We first make predictions on the 2D slices from each plane and then reconstruct the 

3D volume by stacking all slices back together. Several previous studies suggest that 

combining predictions from multiple views can often improve the accuracy and the 

robustness of the final decision since complementary information can be exploited from 

multiple views simultaneously.Thereby, the fused prediction from multiple planes is 

superior to any estimation of a single plane. The overall module is shown in Figure 2. 

More specifically, majority voting is applied to fuse the  

  

  
  

Figure 2. Illustration of the multi-planar fusion module, where the input 3D volume is 

first parsed into 3 sets of slices along the sagittal,coronal, and axial planes to be evaluated 

respectively. Then the final 3D estimation is obtained by fusing predictions from each 

individual plane.  

Figure 3. An example of 3D predictions reconstructed from the sagittal,coronal, and axial 

planes as well as their fusion output. Estimations from single planes are already 

reasonably well, whereas the single fusion outcome is superior to estimation from any 

single plane. hard estimations by seeking an agreement among different planes. If the 

predictions from all planes do not agree on a voxel, then we select the prediction for that 

voxel with the maximum confidence. As simple as this strategy might sound, this method 

has been shown to result in highly robust and efficient outcome in various previous 

studies . The final decision for the i-th voxel y i of ˆYm is: y i =yVi , if V, V    {S, C,A}, 

V  = V   | yVi = yVi             yV  i , otherwise,     (2)  
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where V   = arg max Pi Vj. Pi s j,Pi,j c and Pi.j A denote V {S,C,A} the probabilities of 

the i-th pixel classified as label j from the sagittal, coronal, and axial planes, respectively. 

yVi denotes the hard estimation for the i-th pixel on plane V , i.e.,yVi = arg max Pi,j V our 

multi-planar fusion module improves both over- and under-estimation by fusing aspects 

from different planes and therefore yields a much better outcome. Note that other rules 

can also be easily adapted to this module. We do not focus on discussing the influence of 

the fusion module in this paper, although intuitively better fusion module should lead to 

higher performance.  

  

Student Model  
After generating the pseudo-labels {ˆYm}Mm=l+1 for the unlabeled dataset SU, the 

training set can be then enlarged by taking the union of both the labeled and the unlabeled 

dataset, i.e., S = SL  {(Im, ˆYm)}Mm =l+1. The student model is trained on this 

augmented dataset S the same way we train the teacher model as described . The overall 

training procedure is summarized . In the training stage, we first train a teacher model in 

a supervised manner and then use it to generate the pseudo-labels for the unlabeled 

dataset. Then we alternate the training of the student model and the pseudo-label 

generation procedures in an iterative manner to optimize the student model T times. In 

the testing stage, we follow the method .  

  

 Computation time  
In our experiments, the teacher model training process takes about 4.94 hours on an 

NVIDIA TITAN Xp GPU card for 80, 000 iterations over all the training cases. The 

average computation time for generating pseudo-label as well as testing per volume 

depends on the volume of the target structure, and the average computation time for 16 

organs is approximately 4.5 minutes, which is comparable to other recent methods even 

for single structure inference. The student model training process takes about 9.88 hours 

for 160, 000 iterations.  

  

Conclusion  
In this paper, we designed a systematic framework DMPCT for multi-organ segmentation 

in abdominal CT scans,which is motivated by the traditional cotraining strategy to 

incorporate multi-planar information for the unlabeled data during training. The pseudo-

labels are iteratively update by inferencing comprehensively on multiple configurations 

of unlabeled data with a multiplanar fusion module. We evaluate our approach on our 

own large newly  

collected high-quality dataset. The results show that  

• our method outperforms the fully supervised learning approach by a large margin  

• it outperforms the single planar method, which further  

demonstrates the benefit of multi-planar fusion;  

• it can learn better if more unlabeled data provided especially when the scale of 

labeled data is small. Our framework can be practical in assisting radiologists for clinical 

applications since the annotation of multiple organs in 3D volumes requires massive 

labor from radiologists. Our framework is not specific to a certain structure, but shows 

robust results in multiple complex anatomical structures within efficient computational 

time. We believe that our algorithm may achieve even higher accuracy if a more 

powerful backbone network or an advanced fusion algorithm is employed, which we 

leave as the future work.  

  

http://www.ijcrt.org/

